
hhh

Toolbox Introduction

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Toolbox Introduction

Josef Grosch

Aug. 3, 1992

hhh

Report No. 25

Copyright 1992 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

1

Toolbox Introduction

Abstract

This document introduces into the usage of the Karlsruhe Toolbox for Compiler Construction. It
should be read by those who effectively want to use the toolbox as first document. Those who
want to learn about the toolbox and its contents in general are referred to the document "A Tool-
box for Compiler Construction".

This document gives an overview about the documentation of the toolbox. It describes how the
individual tools interact in order to generate a complete compiler. The general structure of a
makefile to control the tools is discussed.

1. Document Overview

The documentation of the Karlsruhe Toolbox for Compiler Construction consists of separate
user’s manuals for the individual tools and additional papers describing further aspects such as
implementation details, examples, and applications. The documents are written in English. For a
few of them there are German versions as well. Only the two master thesis about estra and mtc

exist in German, only.

Table 1: Document Set
iii
Filename Title Pagesiii
intro Toolbox Introduction 12
toolbox A Tool Box for Compiler Construction 11
werkzeuge Werkzeuge für den Übersetzerbau 12
reuse Reusable Software - A Collection of Modula-2-Modules 24
reuseC Reusable Software - A Collection of C-Modules 12
prepro Preprocessors 14
rex Rex - A Scanner Generator 32
scanex Selected Examples of Scanner Specifications 21
scangen Efficient Generation of Table-Driven Scanners 15
lalr-ell The Parser Generators Lalr and Ell 43
lalr Lalr - A Generator for Efficient Parsers 22
ell Efficient and Comfortable Error Recovery in Recursive Descent Parsers 15
highspeed Generators for High-Speed Front-Ends 12
autogen Automatische Generierung effizienter Compiler 10
ast Ast - A Generator for Abstract Syntax Trees 36
toolsupp Tool Support for Data Structures 11
ag Ag - An Attribute Evaluator Generator 27
ooags Object-Oriented Attribute Grammars 10
multiple Multiple Inheritance in Object-Oriented Attribute Grammars 10
puma Puma - A Generator for the Transformation of Attributed Trees 29
trafo Transformation of Attributed Trees Using Pattern Matching 16
minilax Specification of a MiniLAX-Interpreter 35
begmanual BEG - a Back End Generator - User Manual 71
mtc Entwurf und Implementierung eines Übersetzers von Modula-2 nach C 105
estra Spezifikation und Implementierung der Transformation attributierter Bäume 79iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2

1.1. Format

The documents exist in two formats: Postscript and troff. These are distinguished by the file
suffixes .ps and .me. The troff files need processing with pic and the device independent version
of troff called ditroff using me-macros by commands like

pic | tbl | eqn | ditroff -me

Depending on the format the documents are located in the directories doc.ps or doc.me.

1.2. Documents

Table 1 lists the titles of the documents, the corresponding filenames (without suffix), and the
number of pages.

1.3. Outlines

In the following the contents of every document is outlined shortly:

Toolbox Introduction
An introduction for effective users of the toolbox which should be consulted first. It gives
an overview about the document set and describes how the tools interact.

A Tool Box for Compiler Construction
Explains the contents of the toolbox and the underlying design. The individual tools are
sketched shortly and some application experiences are reported.

Werkzeuge für den Übersetzerbau
A German version of the previous document.

Reusable Software - A Collection of Modula-2-Modules
Describes a library of general routines written in Modula-2 which are oriented towards
compiler construction. The output of some tools has to be linked with this library.

Reusable Software - A Collection of C-Modules
Describes a library of general routines written in C which are oriented towards compiler
construction. The output of some tools has to be linked with this library.

Preprocessors
Describes several preprocessors for the extraction of scanner specifications out of parser
specifications and for the conversion of lex/yacc input to rex/lalr input or vice versa. There
are seven preprocessors:

cg -xz converts an attribute grammar to lalr input
rpp combines a grammar and a scanner specification to rex input
l2r converts lex input to rex input
y2l converts yacc input to lalr input
r2l converts rex input to lex input
cg -u converts an attribute grammar to yacc input
bnf converts a grammar from EBNF to BNF

Rex - A Scanner Generator
The user’s manual for the scanner generator rex.

Selected Examples of Scanner Specifications
A collection of scanner specifications for rex dealing mostly with pathological cases.

Efficient Generation of Table-Driven Scanners
Describes internals of the scanner generator rex like the so-called tunnel automaton and the
linear time algorithm for constant regular expressions.

3

The Parser Generators Lalr and Ell
The user’s manual for the LALR(1) parser generator lalr and the LL(1) parser generator ell.
It describes among other things the input language common to both generators.

Lalr - A Generator for Efficient Parsers
Describes details of the implementation of the parsers generated by lalr and further out-
standing features of this tool.

Efficient and Comfortable Error Recovery in Recursive Descent Parsers
Describes the implementation of the parsers generated by ell especially with respect to
automatic error recovery.

Generators for High-Speed Front-Ends
A summary of the highlights of the scanner and parser generators and a comparison to
lex/yacc and flex/bison.

Automatische Generierung effizienter Compiler
A German version of the previous document.

Ast - A Generator for Abstract Syntax Trees
The user’s manual of ast, a tool supporting the definition and manipulation of attributed
trees and graphs.

Tool Support for Data Structures
Also describes ast, but less precise than the previous document.

Ag - An Attribute Evaluator Generator
The user’s manual of ag, a generator for evaluators of ordered attribute grammars (OAG).

Object-Oriented Attribute Grammars
Also describes ag, like the previous document, with emphasis on the object-oriented
features.

Multiple Inheritance in Object-Oriented Attribute Grammars
Extends the object-oriented attribute grammars described in the previous document to mul-
tiple inheritance.

Spezifikation und Implementierung der Transformation attributierter Bäume
Diploma thesis in German about the design and implementation of estra, a generator for the
transformation of attributed trees.

Puma - A Generator for the Transformation of Attributed Trees
The user’s manual of puma, a tool for the transformation of attributed trees which is based
on pattern matching and unification.

Transformation of Attributed Trees Using Pattern Matching
Also describes puma using a more introductory style and compares it to similar tools.

Specification of a MiniLAX-Interpreter
The annotated input to generate a compiler for the example language MiniLAX.

BEG - a Back End Generator - User Manual
The user’s manual of the back-end-generator beg.

Entwurf und Implementierung eines Übersetzers von Modula-2 nach C
Diploma thesis in German about the design and implementation of the Modula-to-C trans-
lator mtc.

For readers intending to use the tools the following documents are of primary interest:

4

intro Toolbox Introduction
toolbox A Tool Box for Compiler Construction
prepro Preprocessors
rex Rex - A Scanner Generator
lalr-ell The Parser Generators Lalr and Ell
ast Ast - A Generator for Abstract Syntax Trees
ag Ag - An Attribute Evaluator Generator
puma Puma - A Generator for the Transformation of Attributed Trees
begmanual BEG - a Back End Generator - User Manual

Of secondary interest might be:

reuse Reusable Software - A Collection of Modula-2-Modules
scanex Selected Examples of Scanner Specifications

The other documents either describe internals of the tools or are excerpts of the above.

2. Generating a Compiler

A compiler usually consists of several modules where every module handles a certain task. The
toolbox gives very much freedom for the design of a compiler and supports various structures.

Figure 1 presents our preferred compiler structure. In the right column are the main
modules that constitute a compiler. The left column contains the necessary specifications. In
between there are the tools which are controlled by the specifications and which produce the
modules. The arrows represent the data flow in part during generation time and in part during
run time of the compiler.

In principle the compiler model works as follows: A scanner and a parser read the source,
check the concrete syntax, and construct an abstract syntax tree. They may perform several nor-
malizations, simplifications, or transformations in order to keep the abstract syntax relatively
simple. Semantic analysis is performed on the abstract syntax tree. Optionally attributes for code
generation may be computed. Afterwards the abstract syntax tree is transformed into an inter-
mediate representation. The latter is the input of the code generator which finally produces the
machine code.

The picture in Figure 1 is relatively abstract by just listing the main tasks of a compiler.
Every task is generated by a tool out of a separate specification which is oriented towards the
problem at hand. The generation processes seem to be independent of each other.

For a real user a more closer look than the one of Figure 1 is necessary. Figure 2 describes
the actual interaction among the tools. It describes the data flow starting from specifications and
ending in an executable compiler. Boxes represent files, circles represent tools, and arrows show
the data flow. The input specifications are contained in the files at the left-hand side. The tools
generate modules containing source code in the implementation languages C or Modula-2. This
modules are shown at the right-hand side. Every module conists of two files with the following
suffixes:

implementation language C:
.h header or interface file
.c implementation part

implementation language Modula-2:
.md definition module
.mi implementation module

Files outside the left- and right-hand side columns contain intermediate data. The various
kinds of information in the files are distinguished by different file types as explained in Table 2.
The few dependencies between tools are shown by the data flow via intermediate files. These

5

Scanner spec:
regular expressions

rex Scanner

Parser spec:
concrete syntax (grammar)

mapping: concrete → abstract

lalr
ell

Parser

Tree spec:
abstract syntax

(grammar)
ast Tree

Semantics spec:
attribute grammar

ag Semantics

Trafo spec:
mapping:

abstract → intermediate
puma Trafo

Intermediate spec:
intermediate language

(grammar)
ast Intermediate

Codegenerator spec:
mapping:

intermediate → machine
beg Codegenerator

Specification Tool
Compiler
Module

Fig. 1: Compiler Structure

6

.scan rpp .rex rex

.pars cg -xz .lalr
lalr
bnf

Scanner
.rpp

.ell ell

ag/cg

.ST

ast/cg

.TS

puma

.cg

.puma

Source

Scanner

Parser

Errors

Eval

Support

Tree

Reuse

Trafo

compile
+ link

.exe

Fig. 2: Interaction and data flow among the tools

dependencies are explained in more detail in the next sections.

7

Table 2: File Types
ii
Suffix Meaningii
.pars scanner and parser specification (including S-attribution)
.scan rest of scanner specification
.rpp intermediate data: scanner description extracted from .pars
.rex scanner specification understood by rex

.lalr parser specification understood by lalr

.ell input for ell (= input for lalr with EBNF constructs)

.cg input for ast and ag

.puma input for puma

.ST intermediate data: storage assignment for attributes

.TS intermediate data: description of attributed treeii

.h C source: header or interface file

.c C source: implementation part

.md Modula-2 source: definition module

.mi Modula-2 source: implementation module

.exe compiled and linked executable compileriicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2.1. Scanning and Parsing

Two parser generators are contained in the toolbox. First, the user has to decide which one to
use. I will not start arguing here in favour of one or the other grammar class. If I am asked, I
recommend to use lalr. Both parser generators and their common input language (types .lalr and
.ell) are documented in "The Parser Generators Lalr and Ell". From the syntactic point of view
both tools understand almost the same input language. The only incompatibility concerns the
different notation to access attributes. From the semantic point of view there are of course differ-
ences with respect to the grammar class and the kind of attribution evaluable during parsing.
Whereas lalr accepts LALR(1) grammars and is able to evaluate and S-attribution (SAG), ell

accepts LL(1) grammars and is able to evaluate an L-attribution (LAG). Both, lalr and ell gen-
erate a module with the default name Parser which serves as basename for the file name, too.
This module name can be chosen freely using an appropriate directive in the input of the parser
generators. Both parser generators can also supply a module called Errors. This is a simple pro-
totype for handling error messages that just prints the messages. However, it is recommended to
use the more comfortable module Errors from the library reuse. In simple cases, this module is
just linked to the user’s program. If modifications are necessary this module should be copied
from the library along with its companion module Positions into the user’s directory. The
module Positions defines a data structure to describe source positions.

The scanner generator rex and its input language (type .rex) are documented in "Rex - A
Scanner Generator". rex generates a module with the default name Scanner which serves as
basename for the file name, too. rex can also generate a module called Source which isolates the
task of providing input for the scanner. By default it reads from a file or from standard input.
Again, it is recommended to use the module Source from the library reuse. In simple cases, this
module is just linked to the user’s program. If modifications are necessary or the module should
provide input for a scanner with a name different to Scanner then this module must be requested
from rex.

It is possible to combine several scanners and parsers either generated by lalr or ell into one
program as long as different module names are chosen.

8

If the parser generator ell is to be used, the inputs of rex and ell have to be specified in the
languages directly understood by these tools (types .rex and .ell). If the parser generator lalr is
to be used, a more comfortable kind of input language is available. It is possible to extract most
of a scanner specification out of a parser grammar. Therefore it is recommended to specify
scanner and parser by two files of types .scan and .pars. Further advantageous of this approach
are that concrete syntax, abstract syntax, and attribute grammar are written in one common
language (types .pars and .cg) and that the attribution to be evaluated during parsing is written
using named attributes. This attribution is checked for completeness and whether it obeys the
SAG property. The language to describe concrete and abstract syntax is documented in: "Ast -
A Generator for Abstract Syntax Trees". The addition of attribute declarations and attribute
computations are documented in: "Ag - An Attribute Evaluator Generator". The use of this
language especially as input for scanner and parser generation is documented in: "Preproces-
sors". This document also describes the preprocessors cg -xz and rpp. cg -xz converts input of
type .pars into input directly understood by lalr (type .lalr) and it extracts most of the scanner
specification which is written on the intermediate file named Scanner.rpp. The rex preprocessor
rpp merges this extracted scanner specification with additional parts provided by the user (type
.scan) and produces input directly understood by rex. The language in files of type .scan is an
extension of the input language of rex. These extensions are also documented in: "Preproces-
sors".

2.2. Semantic Analysis and Transformation

Our preferred compiler design constructs an abstract syntax tree as underlying data structure for
semantic analysis. Afterwards this tree is usually mapped to some kind of intermediate language
by a phase termed transformation.

The syntax tree as central data structure is managed by the module Tree. This module is
generated by the tool ast out of a specification in a file of type .cg. The tool ast and its input
language are documented in: "Ast - A Generator for Abstract Syntax Trees". The construction

Table 3: Library Units Needed by Generated Modules
iii
Tool Module C Modula-2iii
rex Source System System
rex Scanner System, Source System, Checks, Memory, Strings, IO,

Position, Source
lalr Parser Memory, DynArray, Sets, System, DynArray, Sets, Strings

Errors Positions, Errors
lalr Errors System, Sets, Idents, System, Strings, Idents, Sets, IO,

Positions Positions
ell Parser Errors System, Strings, Positions, Errors
ell Errors System, Sets, Idents, System, Strings, Idents, Sets, IO,

Positions Positions
reuse Errors System, Memory, Sets, System, Memory, Strings, StringMem,

Idents, Positions Idents, Sets, IO, Positions, Sort
ast Tree System, General, Memory, System, General, Memory, DynArray,

DynArray, StringMem, IO, Layout, StringMem, Strings,
Idents, Sets, Positions Idents, Texts, Sets, Positions

ag Eval - -
puma Trafo System System, IOiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

9

of trees is usually done during parsing. It is specified within the semantic actions of the input of
the parser generator.

One possibility for the specification of semantic analysis is the use of an attribute grammar.
The tool ag generates an evaluator module (named Eval by default) out of an attribute grammar.
As this tool also has to know the structure of the abstract syntax tree both, ast and ag usually
process the same input file. The tool ag and the extensions to the input language of ast for attri-
bute grammars are documented in: "Ag - An Attribute Evaluator Generator".

The optimizer of ag decides how to implement attributes. They can be either stored in the
tree or in global stacks or global variables. This information is communicated from ag to ast in
files of type .ST. (This feature is not implemented yet.)

The tool puma generates transformers (named Trafo by default) that map attributed trees to
arbitrary output. As this tool also has to know about the structure of the tree this information is
communicated from ast to puma via a file of type .TS. The tool puma and its input language are
documented in: "Puma - A Generator for the Transformation of Attributed Trees".

The names of the modules produced by the tools ast, ag, and puma can be controlled by
directives in the input. Figure 2 uses the default names. By chosing different names it is possible
to combine several tree modules, attribute evaluators, and transformers in one program.

2.3. Compiling and Linking

All the source modules generated by the tools have to be compiled by a compiler appropriate for
the implementation language (C or Modula-2). Additional hand-written modules can be added as
necessary. In Figure 2 the module Support indicates this possibility. In the last step all binaries
have to be linked together with a few modules of the library reuse to yield an executable

Table 4: Modules in the Library Reuse
iii
Module Task C Modula-2iii
Memory dynamic storage (heap) with free lists y y
Heap dynamic storage (heap) without free lists - y
DynArray dynamic and flexible arrays y y
Strings string handling - y
StringMem string memory y y
Idents identifier table - unambiguous encoding of strings y y
Lists lists of arbitrary objects - y
Texts texts are lists of strings (lines) - y
Sets sets of scalar values (without run time checks) y y
SetsC sets of scalar values (with run time checks) - y
Relations binary relations between scalar values - y
IO buffered input and output - y
StdIO buffered IO for standard files - y
Layout more routines for input and output - y
Positions handling of source positions y y
Errors error handler for parsers and compilers y y
Source provides input for scanners y y
Sort quicksort for arrays with elements of arbitrary type - y
System interface to the operating system y y
General miscellaneous functions y yiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

10

compiler.

The use of modules from the library reuse depends on the implementation language and the
used tools. There is a C and a Modula-2 version of this library. The Modula-2 version is docu-
mented in: "Reusable Software - A Collection of Modula-2-Modules". The C version is docu-
mented in: "Reusable Software - A Collection of C-Modules". Table 3 lists the library units
needed by tool generated modules. Additionally the user may engage further modules from this
library for various tasks. Table 4 lists the modules that might be of interest. The right-hand side
columns describe the availability of the modules with regard to the implementation language.

3. Makefile

The tools of the toolbox are conveniently controlled by the UNIX program make and an
appropriate makefile - at least under the UNIX operating system. This eases the invocation of the
tools and minimizes the amount of regeneration after changes. Figure 2 can be used to derive a
makefile because it describes most of the dependencies among tools and files. The following
makefiles control the generation of compilers for the example language MiniLAX in the target
languages C and Modula-2. The annotated specification of this language is documented in:
"Specification of a MiniLAX-Interpreter". The makefiles are examples a user can start with.

The makefiles in the next sections deviate in the following from the fundamental structure
presented in Figure 2:

- The attribute evaluator module is called Semantics instead of Eval.

- The transformation module is called ICode instead of Trafo.

- The hand-written modules are called ICodeInter and minilax. The latter constitutes the
main program.

- There are two support modules for semantic analysis called Definitions and Types. These
are generated by tools (ast/cg and puma), too.

3.1. C

The macro LIB specifies the directory where the compiled library reuse is located. The name of
this library is libreuse.a. The -I flag in the macro CFLAGS specifies the directory where the
header files of the library modules are located.

The first command (target minilax) is for linking the compiled modules to an executable
compiler. The succeeding entries describe the dependencies during the generation phase and the
invocation of the tools. The dependencies before the target lint are those needed during compi-
lation.

LIB = $(HOME)/lib
INCDIR = $(LIB)/include
CFLAGS = -I$(INCDIR)
CC = cc

SOURCES = Scanner.h Scanner.c Parser.h Parser.c Tree.h Tree.c \
Semantics.h Semantics.c Types.h Types.c Definitions.h Definitions.c \
ICode.h ICode.c ICodeInter.h ICodeInter.c minilax.c

BINS = minilax.o Scanner.o Parser.o Tree.o \
Types.o Definitions.o Semantics.o ICode.o ICodeInter.o

11

minilax: $(BINS)
$(CC) $(CFLAGS) $(BINS) $(LIB)/libreuse.a -o minilax -lm

Scanner.rpp Parser.lalr: minilax.pars
cg -cxzj minilax.pars;

minilax.rex: minilax.scan Scanner.rpp
rpp < minilax.scan > minilax.rex;

Scanner.h Scanner.c: minilax.rex
rex -cd minilax.rex;

Parser.h Parser.c: Parser.lalr
lalr -c -d Parser.lalr;

Tree.h Tree.c: minilax.cg
cg -cdimRDI0 minilax.cg;

Semantics.h Semantics.c: minilax.cg
cg -cDI0 minilax.cg;

Definitions.h Definitions.c Definitions.TS: Definitions.cg
cg -cdim4 Definitions.cg;

Tree.TS: minilax.cg
echo SELECT AbstractSyntax Output | cat - minilax.cg | cg -c4

Types.h Types.c: Types.puma Tree.TS
puma -cdipk Types.puma;

ICode.h ICode.c: ICode.puma Tree.TS Definitions.TS
puma -cdi ICode.puma;

Parser.o: Parser.h Scanner.h Tree.h Types.h Definitions.h
Semantics.o: Semantics.h Tree.h Definitions.h Types.h
Tree.o: Tree.h
Definitions.o: Definitions.h Tree.h
Types.o: Tree.h Types.h
ICode.o: Tree.h Types.h ICodeInter.h
minilax.o: Scanner.h Parser.h Tree.h Semantics.h Definitions.h ICode.h \

ICodeInter.h Types.o

lint: $(SOURCES)
lint -I$(HOME)/reuse/c -u *.c

clean:
rm -f Scan*.? Parser.? Tree.? Sema*.? Defi*.? Types.? ICode.? *.TS
rm -f core _Debug minilax *Tab mini*.rex Parser.lalr Scan*.rpp yy*.w *.o

.c.o:
$(CC) $(CFLAGS) -c $*.c;

12

3.2. Modula-2

The first command (target minilax) describes compilation and linking using the GMD Modula-2
compiler MOCKA. This compiler does its own dependency analysis among the sources. There-
fore the makefile does not contain any dependency descriptions between sources and binaries.
The -d flag of the compiler call mc specifies the directory where the library reuse is located. The
rest of the makefile describes the generation phase and the invocation of the tools.

SOURCES = Scanner.md Scanner.mi Parser.md Parser.mi \
Tree.md Tree.mi Semantics.md Semantics.mi \
Types.md Types.mi Definitions.md Definitions.mi \
ICode.md ICode.mi ICodeInter.md ICodeInter.mi minilax.mi

minilax: $(SOURCES)
echo p minilax | mc -d ../../reuse/src

Scanner.rpp Parser.lalr: minilax.pars
cg -xzj minilax.pars;

minilax.rex: minilax.scan Scanner.rpp
rpp < minilax.scan > minilax.rex;

Scanner.md Scanner.mi Scanner.Tab: minilax.rex
rex -d minilax.rex;

Parser.md Parser.mi Parser.Tab: Parser.lalr
lalr -d Parser.lalr;

Tree.md Tree.mi: minilax.cg
cg -dimRDI0 minilax.cg;

Semantics.md Semantics.mi: minilax.cg
cg -DI0 minilax.cg;

Definitions.md Definitions.mi Definitions.TS: Definitions.cg
cg -dim4 Definitions.cg;

Tree.TS: minilax.cg
echo SELECT AbstractSyntax Output | cat - minilax.cg | cg -4

Types.md Types.mi: Types.puma Tree.TS
puma -dipk Types.puma;

ICode.md ICode.mi: ICode.puma Tree.TS Definitions.TS
puma -di ICode.puma;

clean:
rm -f Scan*.m? Parser.m? Tree.m? Sema*.m? Defi*.m? Types.m? ICode.m?
rm -f core *.TS *.[dimor] _Debug minilax *Tab mini*.rex Parser.lalr Scan*.rpp

1

Contents

Abstract .. 1

1. Document Overview .. 1

1.1. Format .. 2

1.2. Documents ... 2

1.3. Outlines .. 2

2. Generating a Compiler ... 4

2.1. Scanning and Parsing ... 7

2.2. Semantic Analysis and Transformation ... 8

2.3. Compiling and Linking .. 9

3. Makefile ... 10

3.1. C ... 10

3.2. Modula-2 .. 12

